Dilatant till conditions far upstream on ice stream D

Onset Project Team

RB Alley, <u>S Anandakrishnan</u>, DD Blankenship, <u>PG Braddock</u>, EC King, <u>A Mironov</u>, DL Morse, <u>A Morton</u>, <u>M Nolan</u>, <u>LE Peters</u>, <u>AM Smith</u>, <u>DE Voigt</u>, <u>JP Winberry</u>

ICDS, PASSCAL (R Greschke), UNAVCO (S O'Neel), RPSC

Penn State University
University of Texas, Institute of Geophysics
British Antarctic Survey

 Conditions at the bed of isD (from seismic reflections).

- Conditions at the bed of isD (from seismic reflections).
- Longitudinal transition from ice-sheet to ice-stream.

- Conditions at the bed of isD (from seismic reflections).
- Longitudinal transition from ice-sheet to ice-stream.
- Lateral boundaries of isD and along-flow of isC (Leo P. poster).

- Conditions at the bed of isD (from seismic reflections).
- Longitudinal transition from ice-sheet to ice-stream.
- Lateral boundaries of isD and along-flow of isC (Leo P. poster).
- Bed of isC over "sticky spot" (Paul W. poster).

- Conditions at the bed of isD (from seismic reflections).
- Longitudinal transition from ice-sheet to ice-stream.
- Lateral boundaries of isD and along-flow of isC (Leo P. poster).
- Bed of isC over "sticky spot" (Paul W. poster).
- The next frontier: Roughness.

Experiment overview

- Seismic experiment to map a change in bed properties along the ice streams.
- Ice stream D: 2 lines
 - * Near the "driving-stress" onset.
 - * Upstream of the onset.
- Ice stream C: 3 lines
 - Downstream: sticky spot (same as Hermann's drill line)
 - * Slightly upstream: in the still-active part
 - * Far upstream: above the ice stream

- Ice thickness and bed elevation (radar-50MHz, seismics, GPS)
- Deforming till presence (reflection phase) and thickness (seismic reflection)
- Ice velocity (GPS, InSAR)
- Water layer presence (radar) and thickness (seismic reflection)
- Sticky spots (microearthquakes)
- Sedimentary basin thickness and properties (seismic reflection, refraction, gravity)

- Firn density; depth to firn-ice transition (short-offset refraction)
- Accumulation variability (radar–200MHz)

- Crustal thickness and properties (seismic reflection, passive seismic)
- Heat flow (passive seismic)

- Crustal thickness and properties (seismic reflection, passive seismic)
- Heat flow (passive seismic)
- Inner core anisotropy (passive seismic)

Field project area

Field project area

Comparison of shotholes in firn vs. below firn

Twenty meter shothole

Sixty meter shothole

Ice stream D seismic profiles

 DL1: 15km profile straddling the "driving-stress" onset

Region where ice stream speeds up as driving stress decreases

Determine basal conditions—water, till, sediments

 DT1: 15km cross-stream profile, 30km upstream of DL1

Region well upstream, examine shear-margin bed conditions

Phase of reflection

- Normal phase reflection: Layer below the ice is "harder" than ice.
- Reversed phase reflection: Layer below the ice is "softer" than ice.
 - ⋆ Ice is pretty soft...
 - ⋆ Dilatant till is softer, water is softer.
- Layer has to be thick to produce a reflection (meters).

Reflection off $V_p = 1.650$,

$$V_s = 0.5$$

Ice stream D reversed reflection

Reversed phase reflection everywhere beneath isD (DL1, onstream portion of DT1).

Reflection phase and magnitude (R_{pp} vs. angle i)

- If the vertical reflection is reversed: dilatant till or water.
 - \star Till: $\rho \sim 2 {\rm g/cc}, \, V_p < 1.7 {\rm km/s}, \, {\rm Poisson:}$ $\nu > 0.4.$
 - \star Water: $\rho = 1, V_p = 1.55, \nu = 0.5$.
 - * Massive layer: fraction of wavelength $(\lambda/4 = 5-10 \text{m})$.
- Non-vertical reflections (P and S) to further constrain till properties. (work in progress)
- Small-scale roughness from multi-spectral analysis. (work in progress)

Reflectivity

Vp=1750 m/s, Vs=900 m/s Vp=1650 m/s, Vs=500 m/s

Reflection off water

Ice stream D reversed reflection

See the poster for more examples of normal and reversed phase.

Roughness

Conclusion

 Bed of ice stream D far upstream is extremely soft.

Conclusion

- Bed of ice stream D far upstream is extremely soft.
- Most likely dilatant till. (maybe water, though unlikely)

Conclusion

- Bed of ice stream D far upstream is extremely soft.
- Most likely dilatant till. (maybe water, though unlikely)
 - * Ice streams are efficient at converting sediments to till.

Before...

...after.

